Estimation of arbitrary order central statistical moments by the Multilevel Monte Carlo Method

نویسندگان

  • Claudio Bierig
  • Alexey Chernov
  • ALEXEY CHERNOV
چکیده

We extend the general framework of the Multilevel Monte Carlo method to multilevel estimation of arbitrary order central statistical moments. In particular, we prove that under certain assumptions, the total cost of a MLMC central moment estimator is asymptotically the same as the cost of the multilevel sample mean estimator and thereby is asymptotically the same as the cost of a single deterministic forward solve. The general convergence theory is applied to a class of obstacle problems with rough random obstacle profiles. Numerical experiments confirm theoretical findings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation of probability density functions by the Multilevel Monte Carlo Maximum Entropy method

We develop a complete convergence theory for the Maximum Entropy method based on moment matching for a sequence of approximate statistical moments estimated by the Multilevel Monte Carlo method. Under appropriate regularity assumptions on the target probability density function, the proposed method is superior to the Maximum Entropy method with moments estimated by the Monte Carlo method. New t...

متن کامل

Statistical Moment Estimation of Delay and Power in Circuit Simulation

Monte Carlo methods and simulation are often used to estimate the mean, variance, and higher order statistical moments of circuit properties like delay and power. The main issues with Monte Carlo methods are the required long run time and the need for prior detailed knowledge of the distribution of the variations. Additionally, most of available circuit simulation tools can run Monte Carlo anal...

متن کامل

Statistical Moment Estimation in Circuit Simulation

Monte Carlo methods and simulation are often used to estimate the mean, variance, and higher order statistical moments of signal properties like delay and slew. The main issues with Monte Carlo methods are the required long run time and the need for prior detailed knowledge of the distribution of the variations. Additionally, most of available circuit simulation tools can run Monte Carlo analys...

متن کامل

Probabilistic analysis of stability of chain pillars in Tabas coal mine in Iran using Monte Carlo simulation

Performing a probabilistic study rather than a determinist one is a relatively easy way to quantify the uncertainty in an engineering design. Due to the complexity and poor accuracy of the statistical moment methods, the Monte Carlo simulation (MCS) method is wildly used in an engineering design. In this work, an MCS-based reliability analysis was carried out for the stability of the chain pill...

متن کامل

Multilevel Monte Carlo Methods for Stochastic Elliptic Multiscale PDEs

In this paper Monte Carlo Finite Element (MC FE) approximations for elliptic homogenization problems with random coefficients which oscillate on n ∈ N a-priori known, separated length scales are considered. The convergence of multilevel MC FE (MLMC FE) discretizations is analyzed. In particular, it is considered that the multilevel FE discretization resolves the finest physical length scale, bu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014